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Summary. A new index, called the differential density matrix overlap (DDMO), 
is proposed for assessment of the electron correlation effects in atoms and 
molecules. DDMO can be easily calculated as the negative value of the correla- 
tion energy derivative with respect to the relative position of the occupied and 
virtual orbitals. DDMO is transparent to physical interpretation. It can serve as 
a tool for analyzing the accuracy of approximate electron correlation methods 
and the validity of the Har t ree-Fock wavefunction as the zeroth-order approxi- 
mation. The properties of DDMO are discussed using test calculations on 11 
atoms and molecules as an example. 
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1. Introduction 

During the last decade, quantum chemistry has witnessed a substantial progress 
in the electron correlation methods [1-7]. The Moller=Plesset perturbation 
theory has been implemented up to the fifth order (MP5) [2]: Calculations with 
the coupled cluster method including triple excitations (CCSDT) have been 
carried out [3, 4]. Several new computer implementations of the previously 
known methods have emerged, including the quadratic configuration interaction 
(QCI) [5] and the Brueckner doubles (BD) approach [6, 7]. 

Although the electron correlation methods vary with respect to their sensitiv- 
ity to the (pseudo-) degeneracy effects, the importance of assessing the validity of 
the Har t ree-Fock wavefunction as the zeroth-order approximation was recog- 
nized a long time ago. The index of almost idempotency (IAI), defined as: 

IAI = ~ ni(1 - n;), (1) 
i 

where ni is the occupation number of the i-th natural spinorbital, was proposed 
in 1965 [8] as a measure of the electron correlation effects. The same index has 
been recently used in the localization of the natural orbitals [9]. Recently, Lee et 
al. have proposed [10, 11] the Euclidean norm of the vector of t~ (single 
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excitation) amplitudes: 

TI = N-l/2[[q 1[, (2) 

where N is the number of electrons, as a diagnostic for the a pr ior i  prediction of 
the validity of a single-determinantal wavefunction. However, applicability of the 
Ta index to assessing the multi-reference character is in doubt as the major role 
played by the 7"1 operator is rotation of spinorbitals (Thouless' theorem [12]). 
Instead, magnitudes of selected T2 amplitudes seem to be more suitable for such 
a diagnostic. 

Another application of the electron correlation indices is that of assessing the 
accuracy of approximate electron correlation methods. The accuracy is usually 
measured as the difference between the computed electron correlation energies 
and those obtained within a given basis set from a full configuration interaction 
(FCI) procedure. One might argue that the accuracy of the corresponding 
wavefunctions or density matrices could be assessed by computing several 
first-order properties, such as dipole and quadrupole moments, energy gradients, 
etc. and comparing them with those obtained within the FCI method. Such 
approach, however, would introduce an unnecessary bias, as different properties 
are sensitive to errors pertinent to different portions of the first-order density 
matrix. For example, errors in the valence natural orbitals are likely to affect 
the computed values of dipole moments, whereas those in the core orbitals 
will primarily influence the computed electron densities at nuclei. It is there- 
fore obvious that an average measure  of the quality of the first-order density 
matrix is needed. It is desirable that the same measure allows one to break down 
the electron correlation effects into contributions from individual occupied 
orbitals. 

2. Theory 

Electronic wavefunctions can be compared in several different ways. The simplest 
idea involves calculation of the overlap between the wavefunctions. This diagnos- 
tic, known as the reference configuration coefficient (Co), has been routinely used 
by quantum chemists for over three decades. Unfortunately, this approach is 
hampered by the fact that the overlap itself is not a size extensive quantity and 
that only systems with the same number of elecrons can be compared. It has 
been repeatedly demonstrated in the literature [11, 12] that Co is not a good 
measure of the magnitude of electron correlation effects. These difficulties are 
alleviated in calculation of the (normalized) overlap between the respective 
electron densities. This approach, which was proposed some time ago by Carbo 
et al. [ 13] for the purpose of assessment of molecular similarity, suffers from the 
necessity of calculating four-center integrals, which makes it computationally 
very expensive. It is also difficult to interpret the resulting unnormalized density 
overlaps, since they do not represent any physical quantity. 

Recently, we have proposed a new similarity index [ 14], called the number of 
overlapping electrons (NOEL), which is both computationally frugal and trans- 
parent to interpretation. Let FA(~, 2') and F~(2, 2') denote two first-order 
reduced density matrices [15], corresponding to the wavefunctions under com- 
parison. They can represent two different systems, the same system described at 
two different levels of theory, or even two different geometries or different states 
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of the same system. The NOEL similarity index is given by: 

(A, B) = I ~ F* (2, ~ ' ) r e  (~, 2') d~ a~', (3) 

where 2 denotes both the Cartesian and spin coordinates. 
When applied to two systems described at the Har t ree-Fock (HF) level, Eq. 

(3) yields the number of the electrons in the overlapping fragments of the 
molecules. In particular: 

(AHF, AHF) = NA, (4) 

where A H F  denotes an atom or a molecule A, possessing NA electrons, described 
at the H F  level. Let A ... .  stand for an atom or a molecule A with more than one 
electron and some approximate correlated electron method "corr". The inequal- 
ity: 

(AHF , A . . . .  ) < NA (5) 

is always satisfied. The difference: 

n A = N A - -  ( A H F  , A . . . .  ), ( 6 )  

which we call the differential density matrix overlap (DDMO), is a measure of 
the extend of electron correlation in A as described by a particular approximate 
electron correlation method. 

Before discussing practical ways of calculating DDMO we describe its 
properties. DDMO is always non-negative. It is size extensive and size consistent 
when calculated from size consistent wavefunctions. From its definition it is clear 
that DDMO is equal to the difference between the total number of electrons and 
the partial trace (over NA/2 diagonal elements corresponding to the doubly 
occupied H F  orbitals) of the correlated density matrix in the basis of H F  
orbitals. Therefore for a CI wavefunction in which k-tuply excited configurations 
have a cumulative weight of w~: 

nA = Z kwh. (7) 
k 

Equation (7) not only allows one to readily calculate DDMO for the systems 
described within the CI formalism, but also hints at some of its properties. For 
an idealized system with NA -- 2k totally uncorrelated electrons and the remain- 
ing 2k electrons describing k fully dissociated single bonds (or k/2 double bonds, 
etc.), it is easy to prove that n A = k provided the system is described within a size 
consistent method. However, for a truncated CI wavefunction with at most 
k-tuple excitations, nA ~< k for a system of any size. This (surprising) result is just 
another manifestation of the well-known lack of size consistency of the truncated 
CI method. 

To calculate DDMO within a particular electron correlation method it is 
convenient to rewrite Eqs. (3) and (6) as: 

nA = NA - -  ( I ~ H F ) ,  (8) 

where ( f ~ V )  is the expectation value of the one-electron H F  density matrix 
operator for A calculated at the correlated level. The expectation value can be 
calculated even for the correlation methods that do not produce corresponding 
wavefunctions. To accomplish that, one has to invoke the concept of effective 
"relaxed" density matrices [15, 16]. The total electronic energy resulting from 
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any electron correlation method that uses single-reference wavefunction can be 
written as: 

E = EHF -[- Ecorr[{E i }, {(~i }, {•a }, {~ba }], (9) 

where EHF is the HF energy. The correlation energy, E ..... is a functional of only 
the occupied (virtual) HF orbitals, (~i ((~a), and the corresponding orbital 
energies, ei (Ca). Within the effective density matrix approach, the expectation 
value ( 0 )  is obtained by perturbing the electronic Hamiltonian by 20  and 
taking the derivative of the ~orresponding energy, E(2): 

c~E(A) 
<05= ~,~ ~=o (10) 

One should point out that, in general, the perturbation affects both the orbital 
energies and the HF orbitals. 

Let us now calculate the expectation value (f~,F).  Since f n F  is a projector 
onto the occupied HF space, one has: 

C3EHF (2) 
02 ~=o =NA" (11) 

Also, since the perturbation 2FHF leaves all the HF orbitals, and the orbital 
energies of the virtual orbitals unchanged: 

OE . . . .  ~32 (2) 4=0 -- OEc°rr[ {E; + 2}' {@ }' {ca }' {q~a }l ~ ~ 2  o . (12) 

Combining Eqs. (8)-(12) we obtain: 

OEcorr[{E i q-2}, {~bi}, {Ea} , {Oa}l 2:o" (13) nA = ~2 

Thus DDMO can be also interpreted as the sensitivity of the correlation energy 
to the relative positions of the occupied and virtual spaces. 

Equation (13) suggests a practical way of calculating DDMO. Since the 
derivative, Eq. (13), does not involve orbital relaxation, it can be easily pro- 
grammed for any of the known electron correlation methods. Alternatively, one 
can calculate DDMO by numerical differentiation at the cost of two calculations 
of the correlation energy. One should remark that for iterative methods, such as 
CCSD, the second calculation would require only a fraction of the computa- 
tional effort associated with the first one. It is so because the converged 
amplitudes from the first calculation can be used as a very efficient guess for the 
second one. 

3. Sample calculations 

The values of DDMO were calculated with the 6-311G** basis set for 11 atoms 
and molecules. The T 1 diagnostics were reported previously by Lee et al. [ 10] for 
9 of these systems. All electrons were correlated. The indices were computed by 
two-point finite differences using a step of 10 -5 [au]. This methodology was 
found to produce the values of DDMO with an accuracy of at least four digits. 
The calculations required a trivial modification of link 801 of the GAUSSIAN 88 
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Table 1. Calculated values of DDMO per electron for selected atoms and molecules 
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System Geometry a N b DDMO ~ 

MP2 MP3 MP4DQ MP4SDQ MP4 QCISD QCISD(T) 

He 2 0.0048 0.0069 0.0075 0.0075 0.0075 0.0077 0.0077 
H2 1.361 2 0.0089 0.0133 0.0150 0.0151 0.0151 0.0161 0.0161 
Be 4 0.0145 0.0265 0.0348 0.0349 0.0350 0.0462 0.0468 

He2 5.610 4 0.0048 0.0068 0.0074 0.0075 0.0075 0.0077 0.0077 

Li z 5.110 6 0.0113 0.0194 0.0246 0.0247 0.0248 0.0313 0.0320 
HF 1.734 10 0.0083 0.0082 0.0084 0.0086 0.0092 0.0087 0.0092 

H20 1.809/104.8 10 0.0105 0.0108 0.0112 0.0114 0.0122 0.0114 0.0122 

CH 4 2.052 10 0.0119 0.0146 0.0149 0.0152 0.0162 0.0155 0.0166 

Ne 10 0.0056 0.0055 0.0056 0.0057 0.0059 0.0057 0.0059 
Nz 2.074 14 0.0159 0.0145 0.0153 0.0162 0.0189 0.0161 0.0184 

CO 2.132 14 0.0136 0.0131 0.0139 0.0153 0.0180 0.0154 0.0173 

a bond lengths in atomic units 
b number ,of electrons 

calculated with the 6-311G** basis set by two-point numerical differences with a shift equal to 10 -5 

suite of programs [18]. The DDMOs were calculated at the MP2, MP3, MP4DQ, 
MP4SDQ, full MP4, QCISD and QCISD(T) [5] levels. The computed values of 
DDMOs per electron (nA/NA) are presented in Table 1. For comparison, in 
Table 2 we quote values of the T~ index taken from Ref. [10]. 

First, we comment on the similarities between the observed trends in the 
computed values of nA/NA and the magnitudes of the T~ indices. In both cases, 
the systems with a considerable multiconfigurational character, namely Be and 
Li2, have the corresponding values of correlation indices much larger than the 
other systems studied. Interestingly, the magnitudes of the T~ indices for He and 
H 2 a r e  much smaller than for other systems that are reasonably well described by 
a single Slater determinant. This is not the case with the normalized DDMO 
indices. This discrepancy can be simply explained by noticing that the T1 
diagnostics puts artificially large emphasis on the single excitations. In an 

Table 2. Values of  the T~ index for selected 
atoms and molecules a System b Method c T 1 

He FCI 0.0029 

H 2 FCI 0.0050 
Be FCI  0.0210 

He 2 FCI 0.0029 
Li2 FCI 0.0165 

HF  CISD 0.0096 
CH 4 CISD 0.0073 
Ne CISD 0.0065 

a Ref. [ 1 01 
b see Table 1 for molecular geometries 
° see Ref. [10] for the basis sets used 
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extreme case of  two-electron systems described by just one occupied and one 
virtual orbital, the 7"1 index is expected to be exactly equal to zero, whereas the 
normalized DDMO index is not. At the Present time, it is unclear how this 
feature of  the T1 diagnostics is going to affect its predictive value. 

Our second comment concerns the convergence of  the MP results. Three 
distinct patterns are present. The indices for the He and Ne atoms and the H2, 
He2, HF, H20,  and CH 4 molecules exhibit in general a monotonic convergence, 
although in the case of  the HF and Ne species the MP3 indices are slightly 
smaller than the MP2 ones. The full MP4 indices are close to those computed 
at the QCISD(T) level, whereas the MP4SDQ indices follow the QCISD ones. 
The size extensivity of D D M O  is clearly demonstrated by comparing the 
indices of  He and the weakly interacting He 2. The second category encom- 
passes the N 2 and CO molecules. There is an oscillatory convergence of the 
DDMOs. Despite this, the MP4 values are not very different from the 
QCISD(T) ones. Finally, for the Be atom and the Li2 molecule a very slow 
convergence of  the MP series is observed. 

The line that demarcates the first two categories from the third one is the 
value of D D M O  per electron. The systems belonging to the first two classes 
have their values of  D D M O  per electron (calculated at the QCISD(T) level) in 
the range of  0.0077-0.0166. The respective values for the third class are 0.0468 
(Be) and 0.0320 (Li2). It is clear that one cannot expect the systems with 
D D M O  per electron greater than ca. 0.02 to be well described with the H F  
wavefunction as the zeroth-order approximation. 

One should point out that the normalized values of  D D M O  express, like 
their T1 counterparts, only an average extent of  the correlation effects per 
electron. Although large values of the normalized D D MO  indicate a substantial 
multiconfigurational character, small values do not imply that the contributions 
from individual orbitals are all small. Such situation can be well illustrated by 
the example of  a large biradicaloid molecule in which only one occupied orbital 
is highly correlated. In such a case it is important to look at contributions to 
nA from "suspicious" occupied orbitals. Let nA(~-~ denote the negative derivative 
of the correlation energy with respect to the orbital energy of the i-th occupied 
orbital. Obviously, (see Eq. (13)): 

N A/2 

nA = ~, nA~i~. (14) 
i = 1  

nA~;), which is calculated as easily as/'/A itself, can be regarded as a contribution 
from the i-th occupied H F  orbital to the error in the first-order density matrix. 
It assumes values between 0 and 1. To illustrate the differences between the 
magnitudes of  individual na~o and their averages, we computed these indices 
for the C H  4 and CO molecules at the QCISD(T) level. The indices are given in 
Table 3. 

There are marked differences between the orbital contributions to DDMOs 
in these two molecules, although the respective averages are very similar. In 
CH4, which has one core and four valence occupied orbitals, the largest 
contribution originates from the a HOMO and amounts to 0.0518. On the 
other hand, in the CO molecule, there are two core and five valence occupied 
orbitals. In this case, the largest contributions come from the two degenerate 
HOMO-1 rc-orbitals and are substantially larger than the largest contributions 
in CH4. 



DDMO: an index for assessment of electron correlation in atoms/molecules 325 

Table 3. Orbital contributions to DDMO in the CH4 and CO molecules (at the QCISD(T) level) a 

CH 4 CO 
Orbital Orbital energy Contribution Orbital Orbital energy Contribution 
i ei [au] to DDMO, hA(i) i ei [au] to DDMO, nA(i) 

1 A '  -11.20582 0.0009 1 a -20.66437 0.0001 
2 A' -0.96292 0.0270 2 G - 11.36067 0.0002 
3 A" -0.59915 0.0429 3 a - 1.52354 0.0184 
4 A' -0.56615 0.0436 4 a -0.80343 0.0343 
5 A' -0.44107 0.0518 5 n -0.63819 0.0664 

6 n -0.63819 0.0664 
Total 0.1662 7 a -0.55281 0.0563 

Total 0.2421 

a calculated with the 6-311G** basis set by two-point numerical differences with a shift equal to 10 -5 

What do we learn from Table 3? the spatial extent of zc-orbitals is usually 
larger than that of  (especially core) a-orbitals. This means that, despite similar 
normalized values of  DDMO, one may expect much larger errors in such 
quantities as multipole moments for the CO molecule than for the C H  4 o n e .  This 
explains why CO is usually regarded to be a "problem" molecule whereas C H  4 

is not. One should note, however, that the core orbital contributions are much 
larger in C H  4 than in CO. This means that inclusion of electron correlation 
effects is going to affect the computed values of such observables as the density 
at nuclei or the average reciprocal distance from the nucleus much more in the 
case of  C H  4 than in CO. Obviously, different observables are sensitive to 
different portions of  the first-order density matrix. 

4. Discussion 

The DDMO index has several advantages. It can be computed easily with the H F  
spin orbitals (Eq. (13)). It is invariant with respect to orbital rotations (although 
one has to use Eqs. (3) and (6) for non-canonical orbitals) and it has a 
transparent physical interpretation. It parallels the N O EL similarity index and 
therefore it allows for a more unified description of the electronic structure of 
atoms and molecules. Since it does not rely on the single excitations alone, it is 
more general than the tl diagnostic. There are two potential applications of 
DDMO. First, it can be used as a diagnostic for the magnitude of the electron 
correlation effects in a given system. Second, it can be utilized for assessing the 
accuracy of  approximate electron correlation methods. The values of  D D M O  
calculated within a given method can be compared with those obtained from the 
FCI calculations. In this way D D M O  can serve as an index complementary to 
the correlation energy. In this respect, DDMO  provides more information than 
the correlation energy alone, since it is sensitive to the quality of wavefunction, 
rather than energy. The traditional way of assessing the accuracy of the 
wavefunction by comparing the calculated dipole moments, optimized ge- 
ometries, and vibrational frequencies [19] is less desirable, since it introduces bias 
toward particular electronic properties. 
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This particular application of DDMO is well illustrated in Figs. 1 and 2 in 
which we display the dependence of the 6-311G** correlation energies and 
DDMOs calculated at different levels of approximation as a function of the 
nuclear separation in the hydrogen molecule. It is evident that upon bond 
stretching the quality of the wavefunction (and therefore the computed proper- 
ties) is expected to deteriorate much quicker than the quality of correlation 
energy. Figure 2 also nicely illustrates the FCI limit of DDMO as R goes to 
infinity. The value of unity is attained as expected. 
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Fig. 1. The D D M O  index as 
a function of  the nuclear 
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Summing up, we believe that both the (normalized) DDMO and the orbital 
contributions to it have the potential of becoming useful tools in assessing the 
extent of electron correlation and judging the accuracy of approximate quantum- 
chemical methods. 
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